88直播

清华主页 EN
导航菜单
研究生导师
Caucher Birkar

教授

单位:88直播-真人直播 丘成桐数学科学中心

办公地点:静斋315

电子邮箱:[email protected]          

个人主页

研究领域

双有理几何

教育背景

2001-2004 博士 诺丁汉大学

工作经历

英国剑桥大学 教授

88直播-真人直播 丘成桐数学科学中心 教授

荣誉与奖励

2019年 英国皇家学会会员

2018年 菲尔兹奖得主

2010年 菲利普·莱弗休姆奖

2010年 Prize of the Fondation Sciences Mathématiques de Paris

发表论文

(1) C. Birkar, Boundedness and volume of generalised pairs. arXiv:2103.14935v2.

(2) C. Birkar, G. Di Cerbo, R. Svaldi; Boundedness of elliptic Calabi-Yau varieties with a rational section.

arXiv:2010.09769v1.

(3) C. Birkar, On connectedness of non-klt loci of singularities of pairs. arXiv:2010.08226v1.

(4) C. Birkar, Y. Chen, Singularities on toric fibrations. arXiv:2010.07651v1.

(5) C. Birkar, K. Loginov, Bounding non-rationality of divisors on 3-fold Fano fibrations. arXiv:2007.15754v1.

(6) C. Birkar, Generalised pairs in birational geometry. arXiv:2008.01008v2.

(7) C. Birkar, Geometry and moduli of polarised varieties.. arXiv:2006.11238v1 (2020).

(8) C. Birkar, Log Calabi-Yau fibrations. arXiv:1811.10709v2.

(9) C. Birkar, Singularities of linear systems and boundedness of Fano varieties. Ann. of Math, 193, No. 2

(2021), 347–405.

(10) C. Birkar; Anti-pluricanonical systems on Fano varieties, Ann. of Math. 190, No. 2 (2019), 345–463.

(11) C. Birkar, Y. Chen, L. Zhang, Iitaka’s Cn,m conjecture for 3-folds over finite fields. Nagoya Math. J., (2016), 1-31.

(12) C. Birkar, J. Waldron; Existence of Mori fibre spaces for 3-folds in char p. Adv. in Math. 313 (2017), 62-101.

(13) C. Birkar, D.-Q. Zhang; Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Pub. Math. IHES

123 (2016), 283-331.

(14) C. Birkar; The augmented base locus of real divisors over arbitrary fields. Math Ann. 368 (2017), no. 3-4, 905-921.

(15) C. Birkar, J.A. Chen; Varieties fibred over abelian varieties with fibres of log general type. Adv. in Math. 270 (2015),

206-222.

(16) C. Birkar; Existence of flips and minimal models for 3-folds in char p. Annales Scientifiques de l’ENS,

49 (2016), 169-212.

(17) C. Birkar; Singularities on the base of a Fano type fibration. J. Reine Angew Math., 715 (2016), 125-142.

(18) C. Birkar, Y. Chen; Images of manifolds with semi-ample anti-canonical divisor. J. Alg. Geom., 25 (2016), 273-287.

(19) C. Birkar, Z. Hu; Log canonical pairs with good augmented base loci. Compos. Math, 150, 04, (2014), 579-592.

(20) C. Birkar, Z. Hu; Polarized pairs, log minimal models, and Zariski decompositions. Nagoya Math. J.

Volume 215 (2014), 203-224.

(21) C. Birkar; Existence of log canonical flips and a special LMMP. Pub. Math. IHES. Volume 115 (2012), 1, 325-368.

(22) C. Birkar; On existence of log minimal models and weak Zariski decompositions. Math Ann., Volume

354 (2012), Number 2, 787-799.

(23) C. Birkar; On existence of log minimal models II. J. Reine Angew Math. 658 (2011), 99-113.

(24) C. Birkar; The Iitaka conjecture C n,m in dimension six. Compos. Math. 145 (2009), 1442-1446.

(25) C. Birkar; On existence of log minimal models. Compos. Math. 146 (2010), 919-928.

(26) C. Birkar; P. Cascini; C. Hacon; J. M c Kernan; Existence of minimal models for varieties of log general

type. J. Amer. Math. Soc. 23 (2010), 405-468.

(27) C. Birkar; V.V. Shokurov; Mld’s vs thresholds and flips. J. Reine Angew. Math. 638 (2010), 209-234.

(28) C. Birkar; Ascending chain condition for log canonical thresholds and termination of log flips. Duke

Math. Journal, volume 136, no 1, (2007), 173-180.×××

上一篇:单芃

下一篇:邱宇